

Delivering Technology Innovation with Insight

Cornwall Local Energy Market Residential Project *A Whistle-stop Tour*

Knowledge Exchange and Stakeholder Sign-off Event 19th November 2020

Dr David Kane, Dr Andrew Peacock, Dr Peter McCallum

Trilemma Consulting Limited

David.Kane@TrilemmaConsulting.co.uk

Residential Project Workstreams

Selection	 Vendors & technologies: Considered BESS, smart storage heating and EV charging Participants: Web Questionnaire, Desktop & Physical Surveys Systems: PV Design & BESS Sizing 	
Installation & Support	 Installed 100 BESS: 54 dc-coupled (new PV) & 46 ac-coupled (existing PV) Installed independent monitoring system [IMS] (grid, BESS, PV & Major Loads) Regular quality assurance of BESS, PV & IMS operation 	
Integration	 Supported development & test of Sonnen's Virtual Power Plant [VPP] platform Integrated Sonnen VPP with Centrica's in-house aggregation platform Independent Monitoring System to support flexibility trading decisions & FFR pre-qualification 	
Testing	 Dominated by un-restricted Self-Consumption operation Delivered flexibility as contracted via LEM Platform National Grid FFR pre-qualification and pilot delivery 	
Reporting & Analysis	 Site-specific Participant Annual Savings Report Participant Event Studies on performance, sizing & headroom 	

Publications Available Soon

- LEM Residential Fleet Self-Consumption Summary Report: Analysis of baseline, PV-only and BESS+PV system performance
- LEM Residential BESS Utilisation Summary Report: BESS utilisation and VPP dispatch headroom under various sizing scenarios, with associated cost and CO₂ impacts
- LEM Residential Data Dictionary: Description of system performance monitoring datapoints, and associated data coverage summary
- LEM Residential MetaData Summary Report: Description of metadata datapoints, and associated metadata coverage summary
- Public-domain Datasets: System Performance and Site Metadata

- Meet the LEM Residential Fleet
- Learning 1: The Role of Smart Metering
- Learning 2: Options to Improve Financial Returns of BESS
- Learning 3: CO₂ savings from residential BESS: a VPP perspective
- Conclusions

Meet the LEM Residential Fleet

Meet our Participants – a diverse bunch!

Heating system type

 Diverse Building Sizes & Heating Systems

• Dispersed installations

 Range of household sizes & Occupancy Patterns

Wide spectrum of Annual Consumption & Generation

BESS Capacity [kWh]

Electrical Consumption [kWh/vr]

- 6 groups in the fleet, by BESS Type & Capacity
 - ac or dc-coupled
 - 5, 7.5 or 10kWh

Туре	5kWh	7.5kWh	10kWh
ас	31	7	8
dc	30	17	7

 Significant spread in annual consumption & production in each group

Learning 1: The Role of Smart Metering

Total Financial Value from self-consumption

BESS Capacity [kWh]

- Total Financial Value from Self-Consumption:
 - Import avoidance
 - Export income
- Value Driven by:
 - Production
 - Consumption
 - Profiles, not annual values
- Incremental Value of BESS
 - Increased import avoidance
 - Reduced Export income
- Marginal Benefit unless you monetise headroom via:
 - Time-of-Use arbitrage
 - Trading & Grid Services

Seasonal Average Production & Consumption

Annual data hides

- Variation by Season
- Variation by HH
- Predicting BESS utilisation is difficult
 - Limited effectiveness of sizing calculations
 - Uncertain savings
 - Low confidence in available Headroom (for trading/flex)

Understanding Production Surplus & Production Deficit

Production Surplus

Production not instantly consumed on-site

Production Deficit

Consumption not instantly met by on-site production

Improving Value Prediction with Smart Meter Data

- Example uses half-hourly data
 - Calculate production surplus/deficit every 30minutes
 - Limited by the performance characteristics & BESS sizing of the training datasets
 - Does not rely upon the "average" load shapes from the consumption & production training datasets
 - Further improve accuracy with time-of-use tariffs or other price signals

Advantages of Smart Metering

- Data Availability pre-deployment could aid several stakeholders:
 - Savings prediction for consumer (from self-consumption and/or trading)
 - Assessment of headroom value for a Virtual Power Plant operator
 - Effective sizing algorithms; reduce CAPEX & improve Rol for asset owners
- Integration with BESS avoiding duplicate metering could improve the customer experience, and reduce costs:
 - Reduce hardware & install cost
 - Minimising physical footprint & installation disruption
 - Reduce installation or commissioning errors
 - Transparency of energy flows for billing & trading settlement
 - Minimise data collection costs

Learning 2: Options to Improve Financial Returns of BESS

Low BESS energy utilisation limits financial returns

BESS Type C) Eco9.43 Hybrid9.53 • Annual average: 0.4-1 full charge cycle equivalents per day

- Warranties could support >more than 1 cycle/day
- Driven by lack of production surplus
- Production surplus limited by Solar PV capacity
- Even with larger Solar PV, eventual Production Deficit will limit BESS Utilisation

How do we limit Round Trip losses?

- Round Trip Efficiency [RTE]
 - Ratio of Discharge Energy to Charge Energy
 - Fleet Average was 70.3%
- Losses are primarily driven by the operating profile:
 - Parasitic Loads: control systems, user displays, metering, communications
 - Charging Losses: driven by varying Production Surplus
 - Discharging Losses: driven by Production Deficit / Consumption

Options to improve returns:

- Product development to reduce CAPEX & increase RTE; which comes with monetary & time costs
- Reduce sizing of dwelling-scale BESS; *limit headroom earnings with minor impact on CAPEX*
- Aggressive headroom trading; *headroom value needs to* [™] *butweigh impacts on BESS cycling & lifetime*
- Community-Scale BESS to leverage diversity whilst reducing CAPEX; *regulatory hurdles*

Discharge Power Utilisation [%]

Community-scale BESS: The trade off

• Why downsize?

- Increase BESS Utilisation
- Improved RTE
- Reduced CAPEX

BESS Resizing	Energy Capacity	Net Value	
Factor	[kWh]	70% RTE	Dyn. RTE
100%	635	-	-
90%	572	£80	£20
80%	508	£500	£230
70%	445	£1,060	£630
60%	381	£1,740	£1,180
50%	318	£2,470	£1,840
50%	318	£2,470	£1,840

Community-scale BESS: Is there a sweet-spot?

- Key Challenges: Reduced Self-Consumption savings
 - Reduced headroom for trading
 - **Regulatory hurdles**

Leveraging Headroom to increase BESS Utilisation

Value was based on 3 trading events to maximise BESS Utilisation

Charge opportunity with low cost grid import Discharge opportunity to capture high value

Headroom: Confidence Level

- Use confidence limits to determine the probability of headroom being available at different periods during the day
- Compute your trading value, here based on ToU arbitrage based on different confidence levels

To unlock Headroom, aggregation is needed

- The headroom profile significantly varies by season; a wide range of trading options may be required
- Using this confidence limit approach, it is possible to allow for significant self-consumption to occur whilst reserving significant capacity for arbitrage/services

Learning 3: CO₂ savings from residential BESS: a VPP perspective

Fleet level CO₂ emission saving

■ summer ■ shoulder ■ winter

- Compute CO₂ emissions using 12 month data at 30 minute temporal precision.
- Use National Grid halfhourly GEF for period of analysis

https://carbonintensity.org.uk/

Fleet level CO₂ emission saving

■ summer ■ shoulder ■ winter

Fleet CO₂ emissions
 attributable to grid import
 fall by c22% by the provision
 of PV and fall by c30% by
 the provision of PV&BESS

Fleet level CO₂ emission saving

- If net fleet emissions are computed, BESS increases emissions, because of energy losses (RTE = c70%)
- PV only reduction is c52% cf
 PV& BESS of c48%
- Dwelling CO₂ emission as computed using a SAP/EPC type approach are disadvantaged by BESS addition

Time-of-Use CO₂ arbitrage

It is possible to evaluate the impact of 'CO₂ arbitrage', where charging at night at low GEF offsets import at evening during high GEF

- Have to question the validity of this type of carbon accounting for flexibility assets
- Emission savings is not at the level of the dwelling but rather at the level of grid
- Flexibility is permits access of VRE and reduced deployment of fossil fuel peaking plant
- System average GEF, even if time of use is perhaps not the best accounting metric

The number of days pa where CO₂ differential night to peak is large enough to overcome RTE losses is limited

Conclusions

Conclusions

- Combined self-consumption & trading revenue from behind the meter, residential BESS generates c£160-£200 pa on capital costs that are about 30x this value
 - Self-consumption only delivers £25-160 per year of net savings within the home
- Based on capital, efficiencies and utilisation, community-scale seems to make more sense than individual dwelling BESS
 - Individual dwelling may allow increased consumer participation and may deliver hyper localised flexibility
- Grid independence may be a key motivation for participants but it is neither tenable nor the purpose of the technology
 - Without high BESS utilisation, return of investment (financial or other embodied costs) is limited
 - Education and transparency are critical
- Access to temporally precise data (e.g. half-hourly Smart Meter data) is key to unlocking more optimal sizing, control options and understanding multiple intra-day trading/flex opportunities
- Revised carbon accounting methodologies are required that reflect how flexibility aids the low carbon transition